受(shou)鑄(zhu)錠(ding)凝固收縮和(he)鑄(zhu)型(xing)受(shou)熱膨脹的(de)影響,鑄(zhu)錠(ding)和(he)鑄(zhu)型(xing)接(jie)觸隨之(zhi)發生變化(hua),即形成氣(qi)(qi)(qi)隙(xi),如(ru)下(xia)圖(tu)所示。當鑄(zhu)錠(ding)和(he)鑄(zhu)型(xing)間氣(qi)(qi)(qi)隙(xi)形成以后(hou),鑄(zhu)錠(ding)向(xiang)鑄(zhu)型(xing)的(de)傳(chuan)熱方式(shi)不只是簡單的(de)傳(chuan)導傳(chuan)熱,同(tong)時存在小(xiao)區域的(de)氣(qi)(qi)(qi)體導熱和(he)輻射傳(chuan)熱,導致鑄(zhu)錠(ding)-鑄(zhu)型(xing)界(jie)面(mian)熱阻(1/hz)發生非線性變化(hua)。界(jie)面(mian)熱量傳(chuan)輸可分為如(ru)下(xia)三個階段。
階段1: 在(zai)(zai)凝固初期,當表面溫(wen)度(du)略(lve)低(di)于(yu)鑄(zhu)錠(ding)液相(xiang)線溫(wen)度(du)時,在(zai)(zai)鑄(zhu)錠(ding)外表面會形成(cheng)一定(ding)厚度(du)的半固態殼;此(ci)時,在(zai)(zai)液體(ti)靜壓(ya)(ya)(ya)力(li)和(he)外界壓(ya)(ya)(ya)力(li)(如(ru)凝固壓(ya)(ya)(ya)力(li)和(he)大氣(qi)壓(ya)(ya)(ya)等(deng))的作用下(xia),鑄(zhu)錠(ding)和(he)鑄(zhu)型(xing)界面處(chu)于(yu)完全(quan)接觸(chu)狀態,如(ru)圖2-84(a)所示(shi),因而界面的固固接觸(chu)熱(re)量傳(chuan)輸方(fang)式(shi)在(zai)(zai)界面傳(chuan)熱(re)過程中(zhong)起主(zhu)導作用, 此(ci)界面宏觀平均換熱(re)系數hz1可表示(shi)為(wei)
h21=a+b·(P1+P3) (2-167)
式中,a和(he)b為(wei)常量;Ph為(wei)液體(ti)靜(jing)壓力;Ps為(wei)外界壓力。
階(jie)段2: 在(zai)給定外界(jie)壓力和液體靜壓力條件下,半固(gu)(gu)(gu)態(tai)(tai)殼(ke)的強(qiang)度存在(zai)一個臨界(jie)值(zhi)σm;隨(sui)著凝固(gu)(gu)(gu)過程的進(jin)行(xing),半固(gu)(gu)(gu)態(tai)(tai)殼(ke)的強(qiang)度不斷增大;當(dang)強(qiang)度大于臨界(jie)值(zhi)時,半固(gu)(gu)(gu)態(tai)(tai)殼(ke)定型;隨(sui)后鑄(zhu)(zhu)錠(ding)半固(gu)(gu)(gu)態(tai)(tai)殼(ke)逐(zhu)漸(jian)與鑄(zhu)(zhu)型分離,固(gu)(gu)(gu)固(gu)(gu)(gu)接(jie)觸(chu)積逐(zhu)漸(jian)減小,氣隙在(zai)界(jie)面(mian)某些位(wei)置(zhi)形(xing)成且其尺寸逐(zhu)漸(jian)增大,導致鑄(zhu)(zhu)錠(ding)和鑄(zhu)(zhu)型界(jie)面(mian)處于半完全接(jie)觸(chu)狀態(tai)(tai),如(ru)圖2-84(b)所(suo)示(shi)。在(zai)此階(jie)段,氣隙的尺寸主要受由(you)液相(xiang)變固(gu)(gu)(gu)相(xiang)發生的凝固(gu)(gu)(gu)收縮(suo)影響(xiang)。盡管(guan)界(jie)面(mian)還(huan)存在(zai)部分固(gu)(gu)(gu)固(gu)(gu)(gu)接(jie)觸(chu),但界(jie)面(mian)熱(re)(re)阻隨(sui)著凝固(gu)(gu)(gu)的進(jin)行(xing)不斷增大,由(you)于鑄(zhu)(zhu)錠(ding)和鑄(zhu)(zhu)型界(jie)面(mian)接(jie)觸(chu)方式(shi)的變化,界(jie)面(mian)熱(re)(re)量(liang)傳(chuan)輸(shu)主要由(you)固(gu)(gu)(gu)固(gu)(gu)(gu)接(jie)觸(chu)傳(chuan)熱(re)(re)、輻射換熱(re)(re)以及氣相(xiang)導熱(re)(re)傳(chuan)熱(re)(re)三(san)分構成,其中,固(gu)(gu)(gu)固(gu)(gu)(gu)接(jie)觸(chu)傳(chuan)熱(re)(re)仍然(ran)占據界(jie)面(mian)熱(re)(re)量(liang)傳(chuan)輸(shu)的主導地位(wei)。此階(jie)段界(jie)面(mian)宏觀平(ping)均換熱(re)(re)系(xi)數hz2可表示(shi)為

此(ci)外,隨著凝(ning)(ning)固的(de)進(jin)行,鑄(zhu)錠和(he)鑄(zhu)型界(jie)面(mian)上固固接(jie)觸(chu)面(mian)積逐漸(jian)減小(xiao),因而(er)階段(duan)1界(jie)面(mian)宏(hong)(hong)觀平均(jun)換(huan)熱(re)系數(shu)hz1最大,階段(duan)2界(jie)面(mian)宏(hong)(hong)觀平均(jun)換(huan)熱(re)系數(shu)hz2值(zhi)次之,階段(duan)3界(jie)面(mian)宏(hong)(hong)觀平均(jun)換(huan)熱(re)系數(shu)hz3值(zhi)最小(xiao),這(zhe)與(yu)實際(ji)凝(ning)(ning)固過程中界(jie)面(mian)換(huan)熱(re)系數(shu)逐漸(jian)減小(xiao)的(de)規(gui)律相互印(yin)證。同(tong)時,在鑄(zhu)錠自(zi)身(shen)重(zhong)力的(de)作(zuo)用下,在鑄(zhu)錠底(di)部位置,界(jie)面(mian)半完全(quan)接(jie)觸(chu)狀態(tai)始終貫穿整個凝(ning)(ning)固過程,這(zhe)與(yu)鑄(zhu)錠頂端界(jie)面(mian)固固接(jie)觸(chu)完全(quan)消(xiao)失有所不(bu)同(tong),如圖2-84(d)所示。
凝(ning)固壓(ya)力在(zai)氣隙的(de)形成過程中扮演了(le)十分重要(yao)的(de)角色。研(yan)究表明,增加凝(ning)固壓(ya)力(兆帕級)具有明顯(xian)的(de)強化冷卻(que)效果(guo),但(dan)在(zai)界(jie)面熱量傳輸(shu)變化的(de)三(san)個(ge)階段(duan),加壓(ya)強化冷卻(que)的(de)程度大有不同(tong)。
階段1:當(dang)壓(ya)力(li)(li)在幾(ji)兆帕下變化(hua)時,由于物性(xing)參數(shu)(shu)(如強度、密度和導熱系數(shu)(shu)等)的變化(hua)量可以(yi)忽(hu)略不(bu)計,壓(ya)力(li)(li)對(dui)(dui)鑄(zhu)錠(ding)和鑄(zhu)型界(jie)(jie)面(mian)(mian)完全接觸狀態(tai)影(ying)響較小(xiao),根據式(2-166)可知(zhi),壓(ya)力(li)(li)對(dui)(dui)界(jie)(jie)面(mian)(mian)宏(hong)觀平均換熱系數(shu)(shu)的影(ying)響可以(yi)忽(hu)略不(bu)計,因此增加壓(ya)力(li)(li)對(dui)(dui)階段1的界(jie)(jie)面(mian)(mian)換熱影(ying)響很(hen)小(xiao)。
階段2:在此(ci)階段,鑄錠和(he)鑄型界面非(fei)完全(quan)接觸狀態主要由凝固(gu)收(shou)縮控制。
隨(sui)著壓力(li)的(de)(de)增(zeng)加(jia)(jia),半固(gu)(gu)態(tai)殼抵抗變形所需臨(lin)界(jie)(jie)強(qiang)(qiang)度增(zeng)大,因(yin)而加(jia)(jia)壓能(neng)夠(gou)抑(yi)制界(jie)(jie)面(mian)非完(wan)全接觸狀(zhuang)態(tai)的(de)(de)形成(cheng),有助于將界(jie)(jie)面(mian)在整個凝固(gu)(gu)過(guo)程中實現保持固(gu)(gu)固(gu)(gu)接觸的(de)(de)狀(zhuang)態(tai)。例(li)如,隨(sui)著壓力(li)的(de)(de)增(zeng)加(jia)(jia),H13表面(mian)上(shang)的(de)(de)坑變得淺平(ping),且數量逐漸(jian)減(jian)少,意味(wei)著鑄錠表面(mian)越來越光滑,粗糙度減(jian)小(xiao),鑄錠鑄型(xing)界(jie)(jie)面(mian)處的(de)(de)固(gu)(gu)固(gu)(gu)接觸面(mian)積增(zeng)大。根據式(2-168)可知(zhi),界(jie)(jie)面(mian)宏觀(guan)平(ping)均傳熱系(xi)(xi)數與壓力(li)趨于正(zheng)比關系(xi)(xi),加(jia)(jia)壓能(neng)夠(gou)顯著提升此(ci)階段界(jie)(jie)面(mian)宏觀(guan)平(ping)均換熱系(xi)(xi)數。因(yin)此(ci),增(zeng)加(jia)(jia)壓力(li)能(neng)夠(gou)強(qiang)(qiang)化(hua)鑄錠鑄型(xing)間界(jie)(jie)面(mian)固(gu)(gu)固(gu)(gu)接觸狀(zhuang)態(tai),抑(yi)制由凝固(gu)(gu)收(shou)縮(suo)導(dao)致界(jie)(jie)面(mian)氣隙的(de)(de)形成(cheng),加(jia)(jia)快鑄錠鑄型(xing)界(jie)(jie)面(mian)傳遞,強(qiang)(qiang)化(hua)冷卻效(xiao)果明顯。
階段(duan)3:界面(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)的(de)(de)長大主要受(shou)控于固態(tai)收縮(suo)。隨著界面(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)尺寸的(de)(de)變大,外界逐步與界面(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)連通,在(zai)壓力的(de)(de)作用下(xia),氣(qi)(qi)(qi)(qi)體逐漸進(jin)(jin)入(ru)界面(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)內(nei),進(jin)(jin)而導(dao)致界面(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)與外界之間的(de)(de)壓差趨于零,壓力對界面(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)的(de)(de)影響逐漸消失。此(ci)階段(duan),氣(qi)(qi)(qi)(qi)體導(dao)熱換熱與輻射換熱為(wei)(wei)界面(mian)(mian)(mian)(mian)換熱的(de)(de)主要方式。其中氣(qi)(qi)(qi)(qi)體導(dao)熱換熱系數(hc,g)主要由(you)氣(qi)(qi)(qi)(qi)隙(xi)內(nei)氣(qi)(qi)(qi)(qi)體導(dao)熱系數(kgap)和(he)界面(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)尺寸(wgap)決定(ding),作為(wei)(wei)計算氣(qi)(qi)(qi)(qi)體導(dao)熱換熱系數的(de)(de)重(zhong)要參數,在(zai)給定(ding)壓力下(xia)氣(qi)(qi)(qi)(qi)體導(dao)熱系數(kgap)可(ke)由(you)下(xia)列公式進(jin)(jin)行計算:

綜上所述,在(zai)通(tong)過氣體維持壓(ya)(ya)力的加(jia)壓(ya)(ya)條件下,壓(ya)(ya)力對界(jie)面換熱系(xi)數的影響主要集(ji)中在(zai)界(jie)面氣隙形(xing)成的第(di)二(er)階段,即在(zai)鑄錠殼凝固收縮階段加(jia)壓(ya)(ya)通(tong)過增(zeng)大鑄錠殼抵抗(kang)變(bian)形(xing)所需臨界(jie)強(qiang)度(du)從而改善界(jie)面換熱,起(qi)到強(qiang)化冷卻的作用。
以(yi)H13在0.1MPa、1MPa和(he)(he)(he)(he)(he)(he)2MPa壓力下(xia)凝固(gu)(gu)為例(li),其(qi)凝固(gu)(gu)壓力通(tong)過(guo)充(chong)入氬氣獲得(de)。為了分析加壓對界面(mian)氣隙尺(chi)寸和(he)(he)(he)(he)(he)(he)換熱(re)方式的影響(xiang)規(gui)律,采用埋設熱(re)電(dian)偶(ou)(ou)以(yi)及(ji)位(wei)移傳感器實驗,同時測量凝固(gu)(gu)過(guo)程(cheng)中(zhong)鑄(zhu)錠和(he)(he)(he)(he)(he)(he)鑄(zhu)型(xing)(xing)溫(wen)度(du)變(bian)化(hua)(hua)(hua)(hua)曲(qu)(qu)線(xian)以(yi)及(ji)其(qi)位(wei)移變(bian)化(hua)(hua)(hua)(hua)曲(qu)(qu)線(xian),其(qi)中(zhong),1#和(he)(he)(he)(he)(he)(he)2#熱(re)電(dian)偶(ou)(ou)分別(bie)測量離(li)(li)鑄(zhu)錠外表面(mian)10mm和(he)(he)(he)(he)(he)(he)15mm位(wei)置(zhi)處鑄(zhu)錠溫(wen)度(du)變(bian)化(hua)(hua)(hua)(hua)曲(qu)(qu)線(xian);3#和(he)(he)(he)(he)(he)(he)4#熱(re)電(dian)偶(ou)(ou)分別(bie)測量鑄(zhu)型(xing)(xing)內(nei)表面(mian)5mm和(he)(he)(he)(he)(he)(he)10mm位(wei)置(zhi)處鑄(zhu)型(xing)(xing)的溫(wen)度(du)變(bian)化(hua)(hua)(hua)(hua)曲(qu)(qu)線(xian);位(wei)移傳感器LVDT1和(he)(he)(he)(he)(he)(he)LVDT2的探頭位(wei)置(zhi)離(li)(li)鑄(zhu)型(xing)(xing)內(nei)表面(mian)徑向(xiang)距(ju)離(li)(li)均為5mm,分別(bie)插入鑄(zhu)錠和(he)(he)(he)(he)(he)(he)鑄(zhu)型(xing)(xing)中(zhong)測量凝固(gu)(gu)過(guo)程(cheng)中(zhong)其(qi)位(wei)移變(bian)化(hua)(hua)(hua)(hua)曲(qu)(qu)線(xian)。測量溫(wen)度(du)和(he)(he)(he)(he)(he)(he)位(wei)移變(bian)化(hua)(hua)(hua)(hua)曲(qu)(qu)線(xian)的裝置(zhi)如圖2-85所示(shi)。

溫(wen)(wen)(wen)度測量曲(qu)線如圖2-86所示,對于(yu)鑄(zhu)錠溫(wen)(wen)(wen)度測量曲(qu)線,存在(zai)“陡升”和“振蕩(dang)”區域,這主要由(you)熱(re)電偶預熱(re)和澆注引(yin)起鋼液湍(tuan)流分(fen)別造成。隨著凝(ning)固過程(cheng)的進行,鑄(zhu)型(xing)溫(wen)(wen)(wen)度升高,鑄(zhu)錠溫(wen)(wen)(wen)度不(bu)斷降低。

因(yin)鑄(zhu)(zhu)(zhu)(zhu)(zhu)(zhu)型內(nei)表(biao)(biao)面(mian)(mian)和(he)(he)(he)鑄(zhu)(zhu)(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)(ding)(ding)外(wai)(wai)(wai)表(biao)(biao)面(mian)(mian)溫度幾乎(hu)難(nan)以(yi)通過(guo)(guo)實驗進(jin)行準確(que)測量(liang)(liang),因(yin)而可通過(guo)(guo)數(shu)值計算的方式獲得(de),即以(yi)測量(liang)(liang)的鑄(zhu)(zhu)(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)(ding)(ding)和(he)(he)(he)鑄(zhu)(zhu)(zhu)(zhu)(zhu)(zhu)型溫度變化曲線(xian)作為輸入(ru)量(liang)(liang),采用Beck 非線(xian)性求解(jie)法,計算鑄(zhu)(zhu)(zhu)(zhu)(zhu)(zhu)型內(nei)表(biao)(biao)面(mian)(mian)(Tw,i)和(he)(he)(he)鑄(zhu)(zhu)(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)(ding)(ding)外(wai)(wai)(wai)表(biao)(biao)面(mian)(mian)溫度(Twm),由(you)于鑄(zhu)(zhu)(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)(ding)(ding)和(he)(he)(he)鑄(zhu)(zhu)(zhu)(zhu)(zhu)(zhu)型表(biao)(biao)面(mian)(mian)非鏡面(mian)(mian),有(you)一定粗糙度,因(yin)而計算所(suo)得(de)鑄(zhu)(zhu)(zhu)(zhu)(zhu)(zhu)型內(nei)表(biao)(biao)面(mian)(mian)(Tw,i)和(he)(he)(he)鑄(zhu)(zhu)(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)(ding)(ding)外(wai)(wai)(wai)表(biao)(biao)面(mian)(mian)溫度(Tw,m)均(jun)為宏觀(guan)平均(jun)表(biao)(biao)面(mian)(mian)溫度,計算結果如(ru)圖2-87所(suo)示。當壓力(li)一定時,在(zai)鑄(zhu)(zhu)(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)(ding)(ding)鑄(zhu)(zhu)(zhu)(zhu)(zhu)(zhu)型界面(mian)(mian)換熱以(yi)及鑄(zhu)(zhu)(zhu)(zhu)(zhu)(zhu)型外(wai)(wai)(wai)表(biao)(biao)面(mian)(mian)散熱的影(ying)響下,鑄(zhu)(zhu)(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)(ding)(ding)外(wai)(wai)(wai)表(biao)(biao)面(mian)(mian)溫度(Tw,i)在(zai)整個凝固過(guo)(guo)程中持(chi)續降(jiang)低,鑄(zhu)(zhu)(zhu)(zhu)(zhu)(zhu)型內(nei)表(biao)(biao)面(mian)(mian)(Tw,m)先增(zeng)加(jia)(jia)而后逐漸降(jiang)低。隨著壓力(li)從0.1MPa增(zeng)加(jia)(jia)至2MPa,鑄(zhu)(zhu)(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)(ding)(ding)外(wai)(wai)(wai)表(biao)(biao)面(mian)(mian)降(jiang)溫速率(lv)和(he)(he)(he)鑄(zhu)(zhu)(zhu)(zhu)(zhu)(zhu)型內(nei)表(biao)(biao)面(mian)(mian)升溫速率(lv)明顯(xian)加(jia)(jia)快,表(biao)(biao)明加(jia)(jia)壓對鑄(zhu)(zhu)(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)(ding)(ding)和(he)(he)(he)鑄(zhu)(zhu)(zhu)(zhu)(zhu)(zhu)型界面(mian)(mian)間換熱速率(lv)影(ying)響顯(xian)著。

當壓力(li)一(yi)定時(shi),界(jie)(jie)面(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)(xi)寬(kuan)度隨(sui)時(shi)間(jian)的變化(hua)關(guan)系可(ke)通過凝(ning)固(gu)(gu)過程(cheng)中鑄(zhu)錠(ding)和(he)(he)鑄(zhu)型位(wei)(wei)移變化(hua)曲線獲得(de)。基(ji)于位(wei)(wei)移傳(chuan)感器(qi)的位(wei)(wei)移測(ce)量結果,所(suo)得(de)界(jie)(jie)面(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)(xi)寬(kuan)度隨(sui)時(shi)間(jian)的變化(hua)關(guan)系如圖2-88(a)所(suo)示(shi),在(zai)0.1MPa、1MPa和(he)(he)2MPa下,界(jie)(jie)面(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)(xi)寬(kuan)度隨(sui)時(shi)間(jian)變化(hua)規(gui)律基(ji)本(ben)相似。以2MPa為例(li),在(zai)凝(ning)固(gu)(gu)初(chu)期,鑄(zhu)錠(ding)、鑄(zhu)型和(he)(he)位(wei)(wei)移傳(chuan)感器(qi)之間(jian)存在(zai)巨大(da)溫差,使得(de)位(wei)(wei)移傳(chuan)感器(qi)附近的鋼液迅速凝(ning)固(gu)(gu),以至(zhi)于無法(fa)測(ce)量階段(duan)2 中凝(ning)固(gu)(gu)收(shou)(shou)縮導致的氣(qi)(qi)(qi)(qi)隙(xi)(xi)寬(kuan)度;同(tong)時(shi),鑄(zhu)錠(ding)和(he)(he)鑄(zhu)型初(chu)期溫差巨大(da),加速了鑄(zhu)型升(sheng)(sheng)溫膨脹和(he)(he)鑄(zhu)錠(ding)冷卻收(shou)(shou)縮,因而在(zai)界(jie)(jie)面(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)(xi)尺(chi)寸(cun)隨(sui)時(shi)間(jian)變化(hua)曲線前段(duan)不存氣(qi)(qi)(qi)(qi)隙(xi)(xi)尺(chi)寸(cun)緩慢增(zeng)長(chang)部(bu)分,取而代之的是(shi)氣(qi)(qi)(qi)(qi)隙(xi)(xi)寬(kuan)度隨(sui)時(shi)間(jian)的陡升(sheng)(sheng),而且氣(qi)(qi)(qi)(qi)隙(xi)(xi)寬(kuan)度的陡升(sheng)(sheng)很大(da)程(cheng)度由鑄(zhu)錠(ding)固(gu)(gu)態收(shou)(shou)縮所(suo)致。因此,位(wei)(wei)移傳(chuan)感器(qi)所(suo)測(ce)氣(qi)(qi)(qi)(qi)隙(xi)(xi)尺(chi)寸(cun)僅包含了固(gu)(gu)態收(shou)(shou)縮導致氣(qi)(qi)(qi)(qi)隙(xi)(xi)形成部(bu)分,無因凝(ning)固(gu)(gu)收(shou)(shou)縮形成氣(qi)(qi)(qi)(qi)隙(xi)(xi)部(bu)分。在(zai)低壓下,增(zeng)加壓力(li)對鑄(zhu)型和(he)(he)鑄(zhu)錠(ding)的密度影響(xiang)很小,幾(ji)乎可(ke)以忽略不計,所(suo)以增(zeng)加壓力(li)對鑄(zhu)型固(gu)(gu)態收(shou)(shou)縮導致氣(qi)(qi)(qi)(qi)隙(xi)(xi)的尺(chi)寸(cun)影響(xiang)非(fei)常(chang)小,所(suo)以在(zai)0.1MPa、1MPa和(he)(he)2MPa下,界(jie)(jie)面(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)(xi)尺(chi)寸(cun)傳(chuan)感器(qi)量的最大(da)值幾(ji)乎相同(tong),約為1.27mm。

根據氬氣(qi)(qi)(qi)導(dao)(dao)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)隨(sui)壓力(li)的(de)(de)變(bian)(bian)化情(qing)況[圖(tu)2-89(a)]、凝(ning)(ning)(ning)固(gu)(gu)(gu)(gu)過(guo)(guo)程中(zhong)界(jie)(jie)(jie)面(mian)(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)隙(xi)測量曲線(xian)和(he)(he)鑄(zhu)錠外(wai)表(biao)面(mian)(mian)(mian)(mian)(mian)以(yi)及鑄(zhu)型內(nei)表(biao)溫度(du)的(de)(de)變(bian)(bian)化曲線(xian),利用式(shi)(2-171)和(he)(he)式(shi)(2-172)可(ke)獲得氣(qi)(qi)(qi)隙(xi)形(xing)(xing)成(cheng)階段3中(zhong)界(jie)(jie)(jie)面(mian)(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)體導(dao)(dao)熱(re)(re)(re)換(huan)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)hc,g和(he)(he)輻(fu)(fu)射換(huan)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)hr,以(yi)及換(huan)熱(re)(re)(re)方(fang)式(shi)比例關系(xi)(xi),結果如(ru)圖(tu)2-89(b)所(suo)示。輻(fu)(fu)射換(huan)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)不受界(jie)(jie)(jie)面(mian)(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)隙(xi)尺寸(cun)的(de)(de)影(ying)響,在(zai)(zai)(zai)整個(ge)凝(ning)(ning)(ning)固(gu)(gu)(gu)(gu)過(guo)(guo)程中(zhong),基本(ben)保持不變(bian)(bian);相比之(zhi)下,氣(qi)(qi)(qi)體導(dao)(dao)熱(re)(re)(re)換(huan)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)主要(yao)由氣(qi)(qi)(qi)體導(dao)(dao)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)和(he)(he)面(mian)(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)隙(xi)尺寸(cun)共同(tong)決定,與氣(qi)(qi)(qi)體導(dao)(dao)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)成(cheng)正比,與界(jie)(jie)(jie)面(mian)(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)隙(xi)尺寸(cun)成(cheng)反比,因而在(zai)(zai)(zai)凝(ning)(ning)(ning)固(gu)(gu)(gu)(gu)過(guo)(guo)程中(zhong)氣(qi)(qi)(qi)體導(dao)(dao)熱(re)(re)(re)換(huan)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)變(bian)(bian)化規律與界(jie)(jie)(jie)面(mian)(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)隙(xi)尺寸(cun)的(de)(de)變(bian)(bian)化過(guo)(guo)程截然相反,呈現先迅速(su)減(jian)(jian)小,然后趨(qu)于(yu)定值。在(zai)(zai)(zai)各(ge)個(ge)壓力(li)條(tiao)件下,隨(sui)著凝(ning)(ning)(ning)固(gu)(gu)(gu)(gu)的(de)(de)進(jin)行,界(jie)(jie)(jie)面(mian)(mian)(mian)(mian)(mian)總換(huan)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)(hc,g+h,)迅速(su)減(jian)(jian)小,然后趨(qu)于(yu)穩(wen)定,其中(zhong)輻(fu)(fu)射換(huan)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)h1在(zai)(zai)(zai)總換(huan)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)中(zhong)的(de)(de)占(zhan)比為60%~80%[120],且在(zai)(zai)(zai)凝(ning)(ning)(ning)固(gu)(gu)(gu)(gu)中(zhong)后期,0.1MPa、1MPa和(he)(he)2MPa壓力(li)下,總界(jie)(jie)(jie)面(mian)(mian)(mian)(mian)(mian)換(huan)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)基本(ben)相等(deng)。由此可(ke)知,低壓下,加壓對由固(gu)(gu)(gu)(gu)態收縮形(xing)(xing)成(cheng)界(jie)(jie)(jie)面(mian)(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)隙(xi)的(de)(de)尺寸(cun)影(ying)響幾乎(hu)可(ke)以(yi)忽略不計。

根(gen)據(ju)以上討論可(ke)知(zhi)(zhi),凝固結束后,界(jie)(jie)面(mian)換(huan)(huan)(huan)熱(re)(re)(re)主(zhu)要(yao)(yao)(yao)通(tong)過氣體導(dao)(dao)(dao)熱(re)(re)(re)換(huan)(huan)(huan)熱(re)(re)(re)和(he)輻射換(huan)(huan)(huan)熱(re)(re)(re)兩種方(fang)式(shi)進行,因加(jia)壓對輻射換(huan)(huan)(huan)熱(re)(re)(re)系數(shu)的(de)影(ying)響很小(xiao),那么加(jia)壓主(zhu)要(yao)(yao)(yao)通(tong)過改(gai)變(bian)(bian)界(jie)(jie)面(mian)氣體導(dao)(dao)(dao)熱(re)(re)(re)換(huan)(huan)(huan)熱(re)(re)(re)系數(shu),從而起到強(qiang)化冷卻(que)的(de)效果。同(tong)時,界(jie)(jie)面(mian)氣體導(dao)(dao)(dao)熱(re)(re)(re)換(huan)(huan)(huan)熱(re)(re)(re)系數(shu)主(zhu)要(yao)(yao)(yao)由(you)氣體導(dao)(dao)(dao)熱(re)(re)(re)系數(shu)和(he)界(jie)(jie)面(mian)氣體尺(chi)(chi)寸(cun)決(jue)定,因壓力(li)(li)從0.1MPa增加(jia)至2MPa,氬(ya)氣導(dao)(dao)(dao)熱(re)(re)(re)系數(shu)變(bian)(bian)化很小(xiao),進一步可(ke)知(zhi)(zhi)壓力(li)(li)主(zhu)要(yao)(yao)(yao)通(tong)過改(gai)變(bian)(bian)界(jie)(jie)面(mian)氣隙(xi)宏觀平(ping)(ping)均尺(chi)(chi)寸(cun)影(ying)響界(jie)(jie)面(mian)氣體導(dao)(dao)(dao)熱(re)(re)(re)換(huan)(huan)(huan)熱(re)(re)(re)系數(shu),進而改(gai)變(bian)(bian)界(jie)(jie)面(mian)總換(huan)(huan)(huan)熱(re)(re)(re)系數(shu)。此(ci)外,壓力(li)(li)對固態收縮(suo)導(dao)(dao)(dao)致(zhi)的(de)界(jie)(jie)面(mian)氣隙(xi)尺(chi)(chi)寸(cun)影(ying)響幾乎可(ke)以忽略不計,那么壓力(li)(li)主(zhu)要(yao)(yao)(yao)通(tong)過改(gai)變(bian)(bian)由(you)凝固收縮(suo)導(dao)(dao)(dao)致(zhi)界(jie)(jie)面(mian)氣隙(xi)的(de)尺(chi)(chi)寸(cun),從而影(ying)響界(jie)(jie)面(mian)換(huan)(huan)(huan)熱(re)(re)(re)。為了評估(gu)壓力(li)(li)對凝固收縮(suo)導(dao)(dao)(dao)致(zhi)界(jie)(jie)面(mian)氣隙(xi)形(xing)成的(de)影(ying)響,利用界(jie)(jie)面(mian)換(huan)(huan)(huan)熱(re)(re)(re)系數(shu)對界(jie)(jie)面(mian)氣隙(xi)宏觀平(ping)(ping)均尺(chi)(chi)寸(cun)(wm)進行計算,計算公式(shi)如下:
式中,hz3為(wei)宏觀界面(mian)換(huan)熱(re)系數,通過將測(ce)溫數據作為(wei)輸(shu)入量,利用Beck 非線性求解法獲得,計算流程(cheng)如(ru)圖2-78所示。在整個凝固(gu)(gu)過程(cheng)中,界面(mian)氣隙宏觀平(ping)均尺寸(wm)明顯小于因(yin)固(gu)(gu)態(tai)收(shou)縮導(dao)致的界面(mian)氣隙尺寸(wgap),同(tong)時,兩者差值(zhi)(wgap-wm)隨(sui)(sui)著(zhu)(zhu)壓(ya)(ya)力(li)的增(zeng)(zeng)加(jia)而(er)(er)增(zeng)(zeng)大(圖2-90).這(zhe)表(biao)(biao)明在鑄(zhu)錠和(he)鑄(zhu)型間(jian)存(cun)在一定(ding)的固(gu)(gu)-固(gu)(gu)接觸區或(huo)微間(jian)隙區。這(zhe)些(xie)區域的面(mian)積隨(sui)(sui)著(zhu)(zhu)壓(ya)(ya)力(li)的增(zeng)(zeng)大而(er)(er)增(zeng)(zeng)大,從而(er)(er)導(dao)致傳導(dao)換(huan)熱(re)的增(zeng)(zeng)加(jia),這(zhe)與鑄(zhu)錠表(biao)(biao)面(mian)粗(cu)糙度的實驗結(jie)果符合(he),也(ye)進一步說明了(le)加(jia)壓(ya)(ya)對界面(mian)氣隙尺寸的影響主要集中在凝固(gu)(gu)收(shou)縮階段。

因此(ci),加壓主要通(tong)過抑制(zhi)由凝固收(shou)縮(suo)導致(zhi)的(de)氣(qi)(qi)隙(xi)(xi)形(xing)成(cheng),增大固固接觸或微氣(qi)(qi)隙(xi)(xi)的(de)界(jie)面(mian)面(mian)積,強化鑄錠和(he)鑄型界(jie)面(mian)完全(quan)接觸狀態,從(cong)而增加界(jie)面(mian)氣(qi)(qi)體導熱(re)換熱(re)系(xi)數;此(ci)外(wai),加壓下(xia),界(jie)面(mian)換熱(re)系(xi)數的(de)增加,加快(kuai)了(le)鑄錠固態收(shou)縮(suo),導致(zhi)凝固初(chu)期由固態收(shou)縮(suo)引起的(de)氣(qi)(qi)隙(xi)(xi)的(de)尺(chi)寸快(kuai)速(su)增大。

