一、氮氣孔的形成機理


  在(zai)(zai)21.5Cr5Mn1.5Ni0.25N含氮(dan)(dan)(dan)(dan)(dan)(dan)雙相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)鋼凝固(gu)過(guo)程(cheng)(cheng)(cheng)中,氮(dan)(dan)(dan)(dan)(dan)(dan)氣(qi)孔形成(cheng)和(he)凝固(gu)前沿處(chu)[%N]1iq隨距(ju)離變化的(de)(de)(de)(de)規律如圖(tu)2-55所(suo)示。由(you)于糊(hu)狀(zhuang)區內大(da)(da)量枝(zhi)晶(jing)(jing)網狀(zhuang)結(jie)構的(de)(de)(de)(de)形成(cheng),液(ye)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)的(de)(de)(de)(de)對(dui)流(liu)只存在(zai)(zai)于一(yi)(yi)次枝(zhi)晶(jing)(jing)尖端位置附(fu)近。且枝(zhi)晶(jing)(jing)間(jian)幾(ji)乎無液(ye)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)的(de)(de)(de)(de)流(liu)動。因(yin)此(ci),枝(zhi)晶(jing)(jing)間(jian)殘(can)余(yu)液(ye)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)中的(de)(de)(de)(de)氮(dan)(dan)(dan)(dan)(dan)(dan)傳質(zhi)主要(yao)依(yi)靠氮(dan)(dan)(dan)(dan)(dan)(dan)的(de)(de)(de)(de)擴(kuo)散行(xing)為(wei),且糊(hu)狀(zhuang)區內氮(dan)(dan)(dan)(dan)(dan)(dan)傳質(zhi)速(su)率(lv)非常小。初(chu)始(shi)(shi)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)貧氮(dan)(dan)(dan)(dan)(dan)(dan)鐵(tie)(tie)素體(ti)(ti)(ti)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)8的(de)(de)(de)(de)氮(dan)(dan)(dan)(dan)(dan)(dan)溶解度(du)(du)(du)和(he)糊(hu)狀(zhuang)區的(de)(de)(de)(de)氮(dan)(dan)(dan)(dan)(dan)(dan)傳質(zhi)速(su)率(lv)較(jiao)低,導致(zhi)在(zai)(zai)貧氮(dan)(dan)(dan)(dan)(dan)(dan)鐵(tie)(tie)素體(ti)(ti)(ti)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)枝(zhi)晶(jing)(jing)附(fu)近的(de)(de)(de)(de)液(ye)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)中出現氮(dan)(dan)(dan)(dan)(dan)(dan)富(fu)集(ji),且[%N]iq迅速(su)增大(da)(da),如圖(tu)2-55(a)所(suo)示。根(gen)據Yang和(he) Leel70]、Svyazhin 等、Ridolfi 和(he) Tassal的(de)(de)(de)(de)報道可知,當(dang)[%N]iq的(de)(de)(de)(de)最大(da)(da)值(zhi)超過(guo)氮(dan)(dan)(dan)(dan)(dan)(dan)氣(qi)泡(pao)(pao)(pao)形成(cheng)的(de)(de)(de)(de)臨界氮(dan)(dan)(dan)(dan)(dan)(dan)質(zhi)量分數(shu)([%N]pore)時,該區域(yu)有(you)氣(qi)泡(pao)(pao)(pao)形成(cheng)的(de)(de)(de)(de)可能性,如圖(tu)2-55(b)所(suo)示。在(zai)(zai)后(hou)續的(de)(de)(de)(de)凝固(gu)過(guo)程(cheng)(cheng)(cheng)中,隨著包晶(jing)(jing)反應的(de)(de)(de)(de)進行(xing),富(fu)氮(dan)(dan)(dan)(dan)(dan)(dan)奧(ao)氏體(ti)(ti)(ti)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)γ以異質(zhi)形核的(de)(de)(de)(de)方式在(zai)(zai)鐵(tie)(tie)素體(ti)(ti)(ti)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)8枝(zhi)晶(jing)(jing)的(de)(de)(de)(de)表(biao)面(mian)開(kai)始(shi)(shi)形核長大(da)(da),逐漸包裹鐵(tie)(tie)素體(ti)(ti)(ti)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)枝(zhi)晶(jing)(jing)表(biao)面(mian),并開(kai)始(shi)(shi)捕(bu)獲殘(can)余(yu)液(ye)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)中的(de)(de)(de)(de)氮(dan)(dan)(dan)(dan)(dan)(dan)氣(qi)泡(pao)(pao)(pao),對(dui)比(bi)圖(tu)2-51和(he)圖(tu)2-56可知,此(ci)時枝(zhi)晶(jing)(jing)間(jian)殘(can)余(yu)[%N]1ig的(de)(de)(de)(de)增長速(su)率(lv)減(jian)小。對(dui)平衡(heng)凝固(gu)而言,殘(can)余(yu)液(ye)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)中氮(dan)(dan)(dan)(dan)(dan)(dan)氣(qi)泡(pao)(pao)(pao)形成(cheng)以后(hou),氮(dan)(dan)(dan)(dan)(dan)(dan)的(de)(de)(de)(de)富(fu)集(ji)程(cheng)(cheng)(cheng)度(du)(du)(du)減(jian)弱,[%N]1iq增長速(su)率(lv)的(de)(de)(de)(de)減(jian)小程(cheng)(cheng)(cheng)度(du)(du)(du)明顯;相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)比(bi)之(zhi)下,Scheil凝固(gu)過(guo)程(cheng)(cheng)(cheng)中,氮(dan)(dan)(dan)(dan)(dan)(dan)氣(qi)泡(pao)(pao)(pao)形成(cheng)以后(hou),殘(can)余(yu)液(ye)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)中氮(dan)(dan)(dan)(dan)(dan)(dan)富(fu)集(ji)狀(zhuang)態有(you)所(suo)緩解,但幅度(du)(du)(du)很小。隨著凝固(gu)界面(mian)的(de)(de)(de)(de)進一(yi)(yi)步推移,被捕(bu)獲的(de)(de)(de)(de)氮(dan)(dan)(dan)(dan)(dan)(dan)氣(qi)泡(pao)(pao)(pao)在(zai)(zai)奧(ao)氏體(ti)(ti)(ti)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)表(biao)面(mian)開(kai)始(shi)(shi)長大(da)(da),并沿凝固(gu)方向拉長,如圖(tu)2-55(c)所(suo)示。



  氮氣(qi)(qi)孔(kong)(kong)沿徑(jing)向生長,生長方(fang)向與凝(ning)固方(fang)向一致,那么(me)氮氣(qi)(qi)孔(kong)(kong)初始(shi)(shi)形成位(wei)置靠近鑄(zhu)錠邊部,且氮氣(qi)(qi)泡(pao)初始(shi)(shi)位(wei)置邊緣全由奧(ao)氏體(ti)相γ構成(圖(tu)2-57中(zhong)I區),與圖(tu)2-55描(miao)述(shu)相符(fu)。隨(sui)著氮氣(qi)(qi)孔(kong)(kong)被(bei)拉長,鐵(tie)素體(ti)相和奧(ao)氏體(ti)相以體(ti)積分數比(bi)約為0.92的關系交替在(zai)氮氣(qi)(qi)泡(pao)周圍形成,直到氮氣(qi)(qi)孔(kong)(kong)閉合。凝(ning)固結束后,氮氣(qi)(qi)孔(kong)(kong)的宏觀形貌類似于橢圓形,與Wei等的研究結果一致



二(er)、氮微觀(guan)偏析對氮氣孔的影響


  氮(dan)(dan)(dan)的(de)(de)(de)分配系(xi)數(shu)(shu)較(jiao)小,導致液(ye)相(xiang)向(xiang)固(gu)(gu)(gu)(gu)相(xiang)轉變的(de)(de)(de)過程中(zhong)(zhong)(zhong)(zhong),固(gu)(gu)(gu)(gu)相(xiang)會(hui)將多余的(de)(de)(de)氮(dan)(dan)(dan)轉移到殘(can)余液(ye)相(xiang)中(zhong)(zhong)(zhong)(zhong),形(xing)(xing)成(cheng)氮(dan)(dan)(dan)偏(pian)析。在(zai)氮(dan)(dan)(dan)偏(pian)析程度逐漸加重的(de)(de)(de)過程中(zhong)(zhong)(zhong)(zhong),當(dang)殘(can)余液(ye)相(xiang)中(zhong)(zhong)(zhong)(zhong)氮(dan)(dan)(dan)質量分數(shu)(shu)超(chao)過其飽和(he)(he)度時(shi)(shi),極(ji)易(yi)形(xing)(xing)成(cheng)氮(dan)(dan)(dan)氣(qi)(qi)(qi)泡(pao)。隨著凝(ning)固(gu)(gu)(gu)(gu)的(de)(de)(de)進(jin)行,若氣(qi)(qi)(qi)泡(pao)無(wu)法上浮而(er)(er)被捕獲,凝(ning)固(gu)(gu)(gu)(gu)結束后就(jiu)會(hui)在(zai)鑄錠(ding)內部形(xing)(xing)成(cheng)氣(qi)(qi)(qi)孔(kong)(kong)(kong)(kong)。因(yin)此(ci),凝(ning)固(gu)(gu)(gu)(gu)過程中(zhong)(zhong)(zhong)(zhong)氮(dan)(dan)(dan)偏(pian)析和(he)(he)溶解(jie)度對鑄錠(ding)中(zhong)(zhong)(zhong)(zhong)最終氮(dan)(dan)(dan)氣(qi)(qi)(qi)孔(kong)(kong)(kong)(kong)的(de)(de)(de)形(xing)(xing)成(cheng)有至關(guan)重要的(de)(de)(de)作用。氮(dan)(dan)(dan)氣(qi)(qi)(qi)孔(kong)(kong)(kong)(kong)多數(shu)(shu)情況下與疏松縮孔(kong)(kong)(kong)(kong)共存,內壁凹凸不(bu)平呈現裂紋狀(zhuang),且整個氣(qi)(qi)(qi)孔(kong)(kong)(kong)(kong)形(xing)(xing)狀(zhuang)不(bu)規則,如(ru)圖2-58所(suo)示。此(ci)類氣(qi)(qi)(qi)孔(kong)(kong)(kong)(kong)不(bu)僅(jin)與鋼液(ye)中(zhong)(zhong)(zhong)(zhong)氣(qi)(qi)(qi)泡(pao)的(de)(de)(de)形(xing)(xing)成(cheng)有關(guan),還受凝(ning)固(gu)(gu)(gu)(gu)收(shou)縮等因(yin)素的(de)(de)(de)影(ying)響,且多數(shu)(shu)分布于鑄錠(ding)心(xin)(xin)部,尤其在(zai)中(zhong)(zhong)(zhong)(zhong)心(xin)(xin)等軸晶區(qu)。這(zhe)主(zhu)要由于中(zhong)(zhong)(zhong)(zhong)心(xin)(xin)等軸晶區(qu)內枝晶生長較(jiao)發達,容易(yi)形(xing)(xing)成(cheng)復雜的(de)(de)(de)網狀(zhuang)結構(gou),從(cong)而(er)(er)將液(ye)相(xiang)分割成(cheng)無(wu)數(shu)(shu)個獨立的(de)(de)(de)液(ye)相(xiang)區(qu)域,當(dang)發生凝(ning)固(gu)(gu)(gu)(gu)收(shou)縮時(shi)(shi),難以進(jin)行補縮,在(zai)形(xing)(xing)成(cheng)疏松縮孔(kong)(kong)(kong)(kong)的(de)(de)(de)同時(shi)(shi),局(ju)部鋼液(ye)靜(jing)壓力降低(di),促(cu)使氮(dan)(dan)(dan)從(cong)殘(can)余液(ye)相(xiang)中(zhong)(zhong)(zhong)(zhong)析出,從(cong)而(er)(er)形(xing)(xing)成(cheng)了氮(dan)(dan)(dan)氣(qi)(qi)(qi)孔(kong)(kong)(kong)(kong)和(he)(he)疏松縮孔(kong)(kong)(kong)(kong)共存的(de)(de)(de)宏觀缺陷。


圖 58.jpg



  平衡凝固時,19Cr14Mn0.9N含(han)氮(dan)(dan)(dan)奧氏(shi)體(ti)(ti)不(bu)銹鋼殘余液相中(zhong)(zhong)氮(dan)(dan)(dan)偏析與體(ti)(ti)系氮(dan)(dan)(dan)溶(rong)解(jie)(jie)度的差值(zhi)如圖2-59所示。凝固初期鐵素(su)體(ti)(ti)阱(ferrite trap)的形(xing)成(cheng),導致氮(dan)(dan)(dan)溶(rong)解(jie)(jie)度的降低,進而使氮(dan)(dan)(dan)偏析與體(ti)(ti)系氮(dan)(dan)(dan)溶(rong)解(jie)(jie)度差值(zhi)呈現出(chu)略微增大的趨勢(shi)。但在(zai)后續凝固過程(cheng)(cheng)中(zhong)(zhong),隨著鐵素(su)體(ti)(ti)阱的消失以及富氮(dan)(dan)(dan)奧氏(shi)體(ti)(ti)相的不(bu)斷形(xing)成(cheng),差值(zhi)減小;在(zai)整個(ge)凝固過程(cheng)(cheng)中(zhong)(zhong)差值(zhi)始終較小,且變化幅度較窄。對于19Cr14Mn0.9N 含(han)氮(dan)(dan)(dan)奧氏(shi)體(ti)(ti)不(bu)銹鋼,液相中(zhong)(zhong)氮(dan)(dan)(dan)氣泡的形(xing)成(cheng)趨勢(shi)較小,難(nan)以在(zai)鑄錠(ding)內形(xing)成(cheng)獨立內壁光(guang)滑(hua)的規則(ze)氮(dan)(dan)(dan)氣孔。


  此外(wai),目前(qian)有(you)人對(dui)(dui)奧(ao)(ao)氏(shi)(shi)體(ti)鋼凝(ning)(ning)固過(guo)(guo)程中氮(dan)(dan)(dan)(dan)(dan)氣(qi)(qi)孔(kong)的形(xing)成進(jin)行(xing)了大量研究,如Yang和Leel901研究了奧(ao)(ao)氏(shi)(shi)體(ti)鋼16Cr3NixMn(x=9和11)凝(ning)(ning)固過(guo)(guo)程中壓力和初始氮(dan)(dan)(dan)(dan)(dan)質量分(fen)數等因素(su)對(dui)(dui)氮(dan)(dan)(dan)(dan)(dan)氣(qi)(qi)孔(kong)形(xing)成的影響(xiang)規律,并(bing)建立(li)了相(xiang)(xiang)應的預測模型。Ridolfi和Tassal[84]分(fen)析(xi)了氮(dan)(dan)(dan)(dan)(dan)偏(pian)(pian)析(xi)、合金元素(su)、冷卻速率以(yi)及枝晶(jing)間距對(dui)(dui)奧(ao)(ao)氏(shi)(shi)體(ti)鋼中氮(dan)(dan)(dan)(dan)(dan)氣(qi)(qi)孔(kong)的影響(xiang)規律,并(bing)揭示了奧(ao)(ao)氏(shi)(shi)體(ti)鋼中氮(dan)(dan)(dan)(dan)(dan)氣(qi)(qi)孔(kong)形(xing)成機理。然而,目前(qian)對(dui)(dui)于(yu)(yu)雙相(xiang)(xiang)鋼中氮(dan)(dan)(dan)(dan)(dan)氣(qi)(qi)孔(kong)形(xing)成的研究較少,且(qie)主要集中在合金元素(su)、鑄造方式、冷卻速率等因素(su)對(dui)(dui)氮(dan)(dan)(dan)(dan)(dan)氣(qi)(qi)孔(kong)影響(xiang)規律的研究,鮮有(you)對(dui)(dui)雙相(xiang)(xiang)鋼中氮(dan)(dan)(dan)(dan)(dan)氣(qi)(qi)孔(kong)形(xing)成機理的報道。以(yi)21.5Cr5Mn1.5Ni0.25N含(han)(han)(han)氮(dan)(dan)(dan)(dan)(dan)雙相(xiang)(xiang)鋼為例,氮(dan)(dan)(dan)(dan)(dan)偏(pian)(pian)析(xi)與溶解(jie)度(du)的差值在整個凝(ning)(ning)固過(guo)(guo)程中的變(bian)化趨勢(shi),如圖(tu)2-59所示。隨(sui)著凝(ning)(ning)固的進(jin)行(xing),氮(dan)(dan)(dan)(dan)(dan)偏(pian)(pian)析(xi)始終大于(yu)(yu)氮(dan)(dan)(dan)(dan)(dan)溶解(jie)度(du),且(qie)差值呈現出(chu)快速增(zeng)大的趨勢(shi)。因此,在21.5Cr5Mn1.5Ni0.25N 含(han)(han)(han)氮(dan)(dan)(dan)(dan)(dan)雙相(xiang)(xiang)鋼凝(ning)(ning)固過(guo)(guo)程中,氮(dan)(dan)(dan)(dan)(dan)偏(pian)(pian)析(xi)嚴(yan)重,殘余液相(xiang)(xiang)內氮(dan)(dan)(dan)(dan)(dan)氣(qi)(qi)泡形(xing)成趨勢(shi)較大,明顯高(gao)于(yu)(yu)19Cr14Mn0.9N含(han)(han)(han)氮(dan)(dan)(dan)(dan)(dan)奧(ao)(ao)氏(shi)(shi)體(ti)不銹鋼。


圖 59.jpg

  氮氣(qi)泡(pao)形(xing)成和長(chang)大具有重要的(de)(de)作用(圖2-60).其中,σ為氣(qi)液界面的(de)(de)表面張力(li),r為氣(qi)泡(pao)半徑。結合經典形(xing)核理(li)論,氮氣(qi)泡(pao)在鋼液中穩定(ding)存(cun)在的(de)(de)必要條件為氣(qi)泡(pao)內壓(ya)力(li)大于作用于氣(qi)泡(pao)的(de)(de)所有壓(ya)力(li)之和,即


圖 60.jpg


  式中(zhong)(zhong)(zhong),Aso由(you)凝(ning)固(gu)過(guo)程中(zhong)(zhong)(zhong)除(chu)氮(dan)(dan)以外其(qi)他(ta)合(he)金(jin)元素的(de)微觀(guan)偏(pian)(pian)析(xi)進行計算(suan),其(qi)值(zhi)隨(sui)著枝晶(jing)(jing)(jing)間(jian)(jian)殘(can)(can)余(yu)液相中(zhong)(zhong)(zhong)氮(dan)(dan)溶(rong)解(jie)度(du)的(de)增(zeng)(zeng)加而減小,表征了(le)枝晶(jing)(jing)(jing)間(jian)(jian)殘(can)(can)余(yu)液相中(zhong)(zhong)(zhong)氮(dan)(dan)溶(rong)解(jie)度(du)對(dui)氮(dan)(dan)氣泡形(xing)成(cheng)的(de)影響程度(du);Ase表征了(le)枝晶(jing)(jing)(jing)間(jian)(jian)氮(dan)(dan)偏(pian)(pian)析(xi)對(dui)氮(dan)(dan)氣泡形(xing)成(cheng)的(de)影響程度(du),可由(you)凝(ning)固(gu)過(guo)程中(zhong)(zhong)(zhong)枝晶(jing)(jing)(jing)間(jian)(jian)殘(can)(can)余(yu)液相中(zhong)(zhong)(zhong)氮(dan)(dan)偏(pian)(pian)析(xi)計算(suan)獲(huo)得,其(qi)值(zhi)隨(sui)著氮(dan)(dan)偏(pian)(pian)析(xi)的(de)增(zeng)(zeng)大而增(zeng)(zeng)大。此外,用于(yu)計算(suan)Aso和(he)Ase時所需(xu)的(de)合(he)金(jin)元素偏(pian)(pian)析(xi)均(jun)由(you)鋼凝(ning)固(gu)相變所致。


  氮氣(qi)泡(pao)的(de)形(xing)(xing)核和(he)(he)長(chang)大過(guo)程復雜(za),且影(ying)響(xiang)因(yin)素眾多(duo),包括凝(ning)(ning)固(gu)(gu)收縮、冶(ye)煉環境以(yi)及坩(gan)堝材質等。因(yin)此,很難采用Pg值精確預測(ce)凝(ning)(ning)固(gu)(gu)過(guo)程中氮氣(qi)泡(pao)的(de)形(xing)(xing)成和(he)(he)長(chang)大。然而基于Yang等的(de)實驗研究(jiu)[70,77],在評估凝(ning)(ning)固(gu)(gu)壓力(li)、合金成分(fen)等因(yin)素對(dui)氮氣(qi)泡(pao)形(xing)(xing)成的(de)影(ying)響(xiang)程度時,Pg起(qi)關鍵作(zuo)用。實際凝(ning)(ning)固(gu)(gu)過(guo)程介(jie)于平衡(heng)凝(ning)(ning)固(gu)(gu)(固(gu)(gu)/液(ye)相(xiang)中溶質完全擴散)和(he)(he)Scheil凝(ning)(ning)固(gu)(gu)(固(gu)(gu)相(xiang)無(wu)溶質擴散,液(ye)相(xiang)中完全擴散)之(zhi)間70].因(yin)此,可分(fen)別計算平衡(heng)凝(ning)(ning)固(gu)(gu)和(he)(he)Scheil凝(ning)(ning)固(gu)(gu)過(guo)程中的(de)Aso、Ase和(he)(he)Pg,闡明實際凝(ning)(ning)固(gu)(gu)過(guo)程中壓力(li)等因(yin)素對(dui)氮氣(qi)泡(pao)形(xing)(xing)成的(de)影(ying)響(xiang)規律。


  現以(yi)21.5Cr5Mn1.5Ni0.25N含氮(dan)雙相(xiang)鋼D1鑄錠(ding)為例,對(dui)凝(ning)固(gu)(gu)過程中Aso、Ase和P8的變(bian)化趨勢進(jin)行計算。圖(tu)2-61描(miao)述(shu)了ΔAso(=Asa-Aso,0)和AAse(=Ase-Ase,o)隨固(gu)(gu)相(xiang)質(zhi)量分數的變(bian)化趨勢(Aso,0和Asc,0分別為D1鑄錠(ding)凝(ning)固(gu)(gu)時(shi)Aso和Ase的初(chu)始值)。


  在(zai)平衡凝(ning)(ning)固(gu)(gu)和(he)Scheil凝(ning)(ning)固(gu)(gu)過(guo)程(cheng)(cheng)(cheng)中,ΔAso的(de)(de)最(zui)(zui)小值分(fen)別為(wei)-0.145和(he)-0.397,與(yu)此相對應的(de)(de)ΔAse值最(zui)(zui)大(da)(da),分(fen)別為(wei)0.68和(he)0.92.在(zai)整個(ge)凝(ning)(ning)固(gu)(gu)過(guo)程(cheng)(cheng)(cheng)中,由于ΔAse與(yu)ΔAso之和(he)始終大(da)(da)于零,因(yin)而枝晶間殘余液相中氮偏析(xi)對D1 鑄(zhu)錠凝(ning)(ning)固(gu)(gu)過(guo)程(cheng)(cheng)(cheng)中氮氣(qi)泡形(xing)(xing)成(cheng)的(de)(de)影響大(da)(da)于氮溶解度,起主導作(zuo)用。此外(wai),在(zai)整個(ge)凝(ning)(ning)固(gu)(gu)過(guo)程(cheng)(cheng)(cheng)中,P8變化(hua)(hua)趨(qu)勢如圖(tu)2-62所示,其(qi)變化(hua)(hua)規(gui)律(lv)(lv)與(yu)Young等(deng)。的(de)(de)研究結果一致,Pg的(de)(de)最(zui)(zui)大(da)(da)值Pg與(yu)Ase+Aso的(de)(de)最(zui)(zui)大(da)(da)值相對應,且在(zai)平衡凝(ning)(ning)固(gu)(gu)和(he) Scheil 凝(ning)(ning)固(gu)(gu)過(guo)程(cheng)(cheng)(cheng)中分(fen)別為(wei)0.63MPa和(he)0.62MPa.此外(wai),可通(tong)過(guo)對比不同(tong)鑄(zhu)錠中的(de)(de)探(tan)討凝(ning)(ning)固(gu)(gu)壓力、初始氮質(zhi)量分(fen)數(shu)以及合金元素(鉻和(he)錳)等(deng)對液相中氮氣(qi)泡形(xing)(xing)成(cheng)的(de)(de)影響,進而明晰各因(yin)素對氮氣(qi)孔形(xing)(xing)成(cheng)的(de)(de)影響規(gui)律(lv)(lv)。


圖 61.jpg


聯系方式.jpg